This example presents hand-calculations to verify the Tier 1 RBSLs for benzene. Note that calculations are shown for both the non-carcinogenic and carcinogenic effects for benzene. Tier 1 RBSL for a chemical with carcinogenic and non-carcinogenic toxicity is the lower of the carcinogenic and non-carcinogenic RBSLs.

Note: Calculations presented here were performed using Tier 1 default input parameters listed in the beginning of this appendix with the exception of the values used for θ_{ws} , θ_{wcrack} , θ_{as} , and θ_{acrack} . The value used for θ_{ws} and θ_{wcrack} is 0.1 as compared to the default value of 0.2. The value used for θ_{as} and θ_{acrack} is 0.2 as compared to the default value of 0.1. Note that these calculations are for illustration and may not reproduce the Tier 1 RBSLs for all pathways. However, the computational software will reproduce RBSLs calculated here if all the input values in the software are set the same as those used here.

APPENDIX G

This example presents hand-calculations to verify the Tier 1 RBSLs for benzene and receptors. Note calculations are shown for both the non-carcinogenic and carcinogenic effects for benzene.

Note to develop Tier 2A levels, the same calculations have to be repeated using site-specific inputs.

DCRBCA Final August 2001

HAND CALCULATIONS

Contaminant: Benzene

- 1. Resident Child
 - a. Carcinogen
 - i. Surficial Soil
 - ii. Subsurface Soil
 - iii. Groundwater
 - iv. Soil to Groundwater (assuming DAF = 1)
 - b. Non-Carcinogen
 - i. Surficial Soil
 - ii. Subsurface Soil
 - iii. Groundwater
- 2. Resident Adult
 - a. Carcinogen
 - i. Surficial Soil
 - ii. Subsurface Soil
 - iii. Groundwater
 - iv. Soil to Groundwater (assuming DAF = 1)
 - b. Non-Carcinogen
 - i. Surficial Soil
 - ii. Subsurface Soil
 - iii. Groundwater
- 3. Commercial
 - a. Carcinogen
 - i. Surficial Soil
 - ii. Subsurface Soil
 - iii. Groundwater
 - iv. Soil to Groundwater (assuming DAF = 1)
 - b. Non-Carcinogen
 - i. Surficial Soil
 - ii. Subsurface Soil
 - iii. Groundwater

DCRBCA Final - 1 - Fiscal Year 2002

Variables Values Used*

v ariabie	es		values Used
$RBTL_{ss}$	=	Risk-based target level in surficial soil [mg/kg]	
TR	=	Target risk or the increased chance of developing cancer	
		over a lifetime due to exposure to a chemical [-]	= 1e-6
BW	=	Body weight [kg]	= 15**
AT_c	=	Averaging time for carcinogens [years]	= 70
ED	=	Exposure duration [years]	= 6**
EF	=	Exposure frequency [days/year]	= 350**
IR_{soil}	=	Soil ingestion rate [mg/day]	= 200**
RAF_o	=	Oral relative absorption factor [-]	= 1
SA	=	Skin surface area [cm ² /day]	$=2500^{**}$
M	=	Soil to skin adherence factor [mg/cm ²]	=0.15
RAF_d	=	Dermal relative absorption factor [-]	= 0.5
IR_{ao}	=	Outdoor inhalation rate [m ³ /hr]	= 1**
ET_{out}	=	Outdoor Exposure time [hr/day]	= 10
SF_o	=	Oral cancer slope factor [(mg/kg-day) ⁻¹]	=0.055
SF_i	=	Inhalation cancer slope factor [(mg/kg-day) ⁻¹]	=0.029
RfD_o		The chemical-specific oral reference dose [(mg/kg-day)]	= 0.003
RfD_i	=	The chemical-specific inhalation reference dose	
		[(mg/kg-day)]	=0.0017
P_e	=	Particulate emission rate [g-soil/cm ² -sec]	= 6.90e-14
W_a	=	Length of soil source area parallel to wind direction [cm]	= 1500
U_a	=	Wind speed at δ_a above ground surface [cm/s]	= 225
$\delta_{\!a}$	=	Breathing zone height [cm]	= 200
$V\!F_p$	=	Volatilization factor of particulates [(mg/m³-air)/(mg/kg-so	
$ ho_{s}$	=	Dry soil bulk density [g-soil/cm ³ -soil]	= 1.8
D^a	=	Chemical-specific diffusion coefficient in air [cm²/s]	= 9.30e-2
D^{w}	=	Chemical-specific diffusion coefficient in water [cm²/s]	
θ_{as}	=	Volumetric air content in vadose zone [cm³-air/cm³-soil]	= 0.2
$ heta_{\!\scriptscriptstyle WS}$	=	Volumetric water content in vadose zone	
		[cm ³ -H ₂ O/cm ³ -soil]	= 0.1
$ heta_{\!\scriptscriptstyle T}$	=	Total soil porosity in the impacted zone [cm ³ /cm ³ -soil]	=0.3
H	=	Chemical-specific Henry's Law constant [(mg/cm ³ -air)/ (mg/cm	
₽ eff		7700 1 1100 1 100 1	=0.228
$D_s^{\it eff}$	=	Effective diffusion coefficient in soil based on vapor-phase	concentration
T7		[cm ² /s]	
K_s	=	$f_{oc} \times K_{oc}$	
	=	Chemical-specific soil-water sorption coefficient for the	0.661
		unsaturated zone [cm ³ -H ₂ O/g-soil]	= 0.661
au	=	Averaging time for vapor flux [s]	4 00 0**
1	=	$ED(yr) \times 365 (day/yr) \times 86400 (sec/day)$	= 1.89e8**
d	=	Depth to base of surficial soil zone [cm]	= 30.48
VF_{ss}		Volatilization factor from surficial soil [(mg/m³-air)/(mg/kg	
$RBTL_{si}$	=	Risk-based target level for indoor inhalation of vapors from	1 subsurtace
ID		soils [mg/kg-soil]	0.417**
IR_{ai}	=	Indoor inhalation rate [m ³ /hr]	$=0.417^{**}$

DCRBCA Final - 2 - Fiscal Year 2002

ET		Indoor Evenouses time [he/dov]	= 18**
ET _{in}		Indoor Exposure time [hr/day] Pick based target level for indoor inhelation of air [mg/m ³]	= 10
$RBTL_{ai}$		Risk-based target level for indoor inhalation of air [mg/m ³ -	an j = 30.48
L_s	=	Depth to subsurface soil sources [cm] Englaced space volume/infiltration area ratio [cm]	$= 30.48$ $= 200^{**}$
L_B		Enclosed space volume/infiltration area ratio [cm]	
L _{crack}	=	Enclosed space foundation or wall thickness [cm]	= 15
ER	=	Enclosed space air exchange rate [1/s]	= 0.00014**
$ heta_{acrack}$	=	Volumetric air content in foundation/wall cracks [cm³-air/cm³-total volume]	0.2
0			= 0.2
$ heta_{wcrack}$	=	Volumetric water content in foundation/wall cracks [cm ³ -H ₂ O/cm ³ -total volume]	= 0.1
$D_{crack}^{e\!f\!f}$			_
D_{crack} h	=	Effective diffusion coefficient through foundation cracks [c Areal fraction of cracks in foundation and/or walls	ZIII /S]
n	=	[cm ² -cracks/ cm ² -total area]	= 0.01
VE	_	Volatilization factor from subsurface soil to indoor	- 0.01
VF_{sesp}	_	(enclosed space) air [(mg/m³-air)/(mg/kg-soil)]	
DDTI		Risk-based target level for indoor inhalation of vapors from	a amound deveator
$KDIL_{wi}$	_	[mg/L-H ₂ O]	i groundwater
$L_{\scriptscriptstyle GW}$	=	Depth to groundwater [cm]	= 300
h_{cap}		Thickness of capillary fringe [cm]	= 500 = 5
h_{v}	=	Thickness of vadose zone [cm]	= 295
		Volumetric air content in capillary fringe soils	<i>– 273</i>
$ heta_{acap}$	_	[cm ³ -air/cm ³ -soil]	= 0.03
$ heta_{wcap}$	=	Volumetric water content in capillary fringe soils	- 0.03
•		[cm ³ -H ₂ O/cm ³ -soil]	= 0.27
D eff	=	Effective diffusion coefficient through capillary fringe [cm	•
$D_{cap}^{e\!f\!f} \ D_{ws}^{e\!f\!f}$	=	Effective diffusion coefficient between groundwater and soil surface	
D_{ws}	_	[cm ² /s]	ni surrace
VF_{wesp}	_	Volatilization factor from groundwater to indoor	
• • wesp		(enclosed space) air [(mg/m³-air)/(mg/L-H ₂ O)]	
Target s	urfa	ce water Concentration [mg/L]	= 0.005
DAF_{POE}		Dilution Attenuation Factor between the point of exposure	- 0.005
DIII POE		and the source [-]	= 1
U_{gw}	=	Groundwater Darcy Velocity [cm/year]	= 304
d_{gw}	=	Groundwater mixing zone thickness [cm]	= 200
I	=	Infiltration rate of water through soil [cm/year]	= 14
\overline{W}	=	Length of source area parallel to groundwater flow [cm]	= 1500
LF_{sw}	=	Dry soil leaching factor [(mg/L-H ₂ O)/(mg/kg-soil]	1000
THQ	=	Target hazard quotient for individual constituents [-]	= 1
AT_{nc}	=	Averaging time for non-carcinogens [years]	$=6^{**}$
$RBTL_{ss}$		Risk-based target level in surficial soil [mg/kg]	Ü
112125		The same and the second of the	

DCRBCA Final - 3 -Fiscal Year 2002

^{*}Values are not listed for calculated variables.
*Values may change for different receptors.

1. Resident - Child

a. Carcinogen

i. Surficial Soil

$$RBTL_{SS} = \frac{TR \times BW \times AT_c \times 365}{EF \times ED \times [(SF_o \times 10^{-6} \times (IR_{soil} \times RAF_o + SA \times M \times RAF_d)) + (SF_i \times IR_{ao} \times ET_{out} \times (VF_{SS} + VF_p))]}$$

$$VF_{p} = \frac{P_{e} \times W_{a}}{U_{a} \times \delta_{a}} \times 10^{3}$$

$$VF_{p} = \frac{6.9e - 14 \times 1500}{225 \times 200} \times 10^{3} = 2.30e - 12$$

 VF_p = Volatilization factor of particulates [(mg/m³-air)/(mg/kg-soil)]

= 2.30e-12

$$VF_{ss} = \frac{2 \times W_a \times \rho_s}{U_a \times \delta_a} \times \sqrt{\frac{D_s^{eff} \times H}{\pi \times [\theta_{ws} + (K_s \times \rho_s) + (H \times \theta_{as})] \times \tau}} \times 10^3$$

$$D_s^{eff} = D^a \times \frac{\theta_{as}^{3.33}}{\theta_T^{2.0}} + D^w \times \frac{1}{H} \times \frac{\theta_{ws}^{3.33}}{\theta_T^{2.0}}$$

$$D_s^{eff} = 9.30e - 2 \times \frac{0.2^{3.33}}{0.3^2} + 1.10e - 5 \times \frac{I}{0.228} \times \frac{0.1^{3.33}}{0.3^2} = 4.86e - 3$$

 D_s^{eff} = Effective diffusion coefficient in soil based on vapor-phase concentration [cm²/s]

=4.86e-3

$$(i)VF_{ss} = \frac{2 \times W_a \times \rho_s}{U_a \times \delta_a} \times \sqrt{\frac{D_s^{eff} \times H}{\pi \times [\theta_{ws} + (K_s \times \rho_s) + (H \times \theta_{as})] \times \tau}} \times 10^3$$

$$(i)VF_{ss} = \frac{2 \times 1500 \times 1.8}{225 \times 200} \times \sqrt{\frac{4.86E - 3 \times 0.228}{\pi \times [0.1 + (0.661 \times 1.8) + (0.228 \times 0.2)] \times 1.89E8}} \times 10^{3} = 1.419E - 4$$

$$(ii)VF_{ss} = \frac{W_a \times \rho_s \times d}{U_s \times \delta_s \times \tau} \times 10^3$$

$$(ii)VF_{ss} = \frac{1500 \times 1.8 \times 30.48}{225 \times 200 \times 1.89E8} \times 10^3 = 9.68E - 6$$

DCRBCA Final - 4 - Fiscal Year 2002

** Take smaller of the two values:

$$VF_{ss}$$
 = Volatilization factor from surficial soil [(mg/m³-air)/(mg/kg-soil)]

$$= 9.68e-6$$

$$RBTL_{SS} = \frac{1e - 6 \times 15 \times 70 \times 365}{350 \times 6 \times [(0.055 \times 10^{-6} \times (200 \times 1 + 2500 \times 0.15 \times 0.5)) + (0.029 \times 1 \times 10 \times (9.6 \times e - 6 + 2.30e - 12))]} = 7.57$$

ii. Subsurface Soil

$$RBTL_{si} = \frac{RBTL_{ai}}{VF_{sesp}}$$

$$RBTL_{ai} = \frac{TR \times BW \times AT_c \times 365}{IR_{ai} \times ET_{in} \times ED \times EF \times SF_i}$$

$$RBTL_{ai} = \frac{1e - 6 \times 15 \times 70 \times 365}{0.417 \times 18 \times 6 \times 350 \times 0.029} = 8.38e - 4$$

 $RBTL_{ai}$ = Risk-based target level for indoor inhalation of air [mg/m³-air]

= 8.38e-4

$$VF_{sesp} = \frac{H \times \rho_{s}}{1 + \left[\frac{D_{s}^{eff} / L_{s}}{ER \times L_{B}}\right] \times \left[\frac{D_{s}^{eff} / L_{s}}{ER \times L_{B}}\right]} \times 10^{3}$$

$$1 + \left[\frac{D_{s}^{eff} / L_{s}}{ER \times L_{B}}\right] + \left[\frac{D_{s}^{eff} / L_{s}}{\left(D_{crack}^{eff} / L_{crack}\right) \times h}\right]$$

$$D_{crack}^{eff} = D^{a} \times \frac{\theta_{acrack}^{3.33}}{\theta_{T}^{2.0}} + D^{w} \times \frac{1}{H} \times \frac{\theta_{wcrack}^{3.33}}{\theta_{T}^{2.0}}$$

$$D_{crack}^{eff} = 9.30e - 2 \times \frac{0.2^{3.33}}{0.3^{2}} + 1.10e - 5 \times \frac{1}{0.228} \times \frac{0.1^{3.33}}{0.3^{2}} = 4.861e - 3$$

 D_{crack}^{eff} = Effective diffusion coefficient through foundation cracks [cm²/s] = 4.861e-3

DCRBCA Final - 5 - Fiscal Year 2002

$$VF_{sesp} = \frac{\frac{0.228 \times 1.8}{0.1 + (0.661 \times 1.8) + (0.228 \times 0.2)} \times \left[\frac{4.86e - 3/30.48}{0.00014 \times 200} \right]}{1 + \left[\frac{4.86e - 3/30.48}{0.00014 \times 200} \right] + \left[\frac{4.86e - 3/30.48}{(4.86e - 3/15) \times 0.01} \right]} \times 10^{3} = 3.485e - 2$$

= Volatilization factor from subsurface soil to indoor VF_{sesp} (enclosed space) air [(mg/m³-air)/(mg/kg-soil)]

= 3.485e-2

$$RBTL_{si} = \frac{8.38e - 4}{3.49e - 2} = 2.4e - 2$$

iii. Groundwater

$$RBTL_{wi} = \frac{RBTL_{ai}}{VF_{wesp}}$$

$$VF_{wesp} = \frac{H \times \left[\frac{D_{ws}^{eff} / L_{GW}}{ER \times L_{B}}\right]}{1 + \left[\frac{D_{ws}^{eff} / L_{GW}}{ER \times L_{B}}\right] + \left[\frac{D_{ws}^{eff} / L_{GW}}{\left(D_{crack}^{eff} / L_{crack}\right) \times h}\right] \times 10^{3}$$

$$D_{ws}^{eff} = (h_{cap} + h_v) \times \left[\frac{h_{cap}}{D_{cap}^{eff}} + \frac{h_v}{D_s^{eff}} \right]^{-1}$$

$$D_{cap}^{eff} = D^{a} \times \frac{\theta_{acap}^{3.33}}{\theta_{T}^{2.0}} + D^{w} \times \frac{1}{H} \times \frac{\theta_{wcap}^{3.33}}{\theta_{T}^{2.0}}$$

$$D_{cap}^{eff} = 9.30e - 2 \times \frac{0.03^{3.33}}{0.3^2} + 1.10e - 5 \times \frac{1}{0.228} \times \frac{0.27^{3.33}}{0.3^2} = 1.562e - 5$$

= Effective diffusion coefficient through capillary fringe = 1.56e-5

$$D_{ws}^{eff} = (5 + 295) \times \left[\frac{5}{1.56e - 5} + \frac{295}{4.86e - 3} \right]^{-1} = 7.88e - 4$$

= Effective diffusion coefficient between groundwater and soil surface [cm²/s] = 7.88e-4

Fiscal Year 2002 DCRBCA Final - 6 -

$$VF_{wesp} = \frac{0.228 \times \left[\frac{7.88e - 4/300}{0.00014 \times 200} \right]}{1 + \left[\frac{7.88e - 4/300}{0.00014 \times 200} \right] + \left[\frac{7.88e - 4/300}{\left(4.86e - 3/15 \right) \times 0.01} \right]} \times 10^{3} = 1.181e - 2$$

 VF_{wesp}

= Volatilization factor from groundwater to indoor (enclosed space) air [(mg/m³-air)/(mg/L-H₂O)]

= 1.18e-2

$$RBTL_{wi} = \frac{8.38e - 4}{1.18e - 2} = 7.095e - 2$$

 $RBTL_{wi}$

= Risk-based target level for indoor inhalation of vapors from groundwater [mg/L-H₂O]

= 7.10e-2

iv. Soil to Groundwater

Allowable soil concentration at the source[mg/kg] = $Target\ surface\ water\ concentration[mg/L]\ at\ the\ POE \times \frac{DAF_{POE}}{LF_{SW}}$

$$LF_{SW} = \frac{\rho_{s}}{\left[\theta_{ws} + K_{s} \times \rho_{s} + H \times \theta_{as}\right] \times \left(1 + \frac{U_{gw} \times \delta_{gw}}{I \times W}\right)}$$

$$LF_{SW} = \frac{1.8}{[0.1 + 0.661 \times 1.8 + 0.228 \times 0.2] \times \left(1 + \frac{304 \times 200}{14 \times 1500}\right)} = 0.346$$

 LF_{sw} = Dry soil leaching factor [(mg/L-H₂O)/(mg/kg-soil] = 0.346

Allowable soil concentration at the source[mg/kg] = $0.005 \times \frac{1}{0.346} = 1.449e - 2$

DCRBCA Final - 7 - Fiscal Year 2002

b. Non-Carcinogen

i. Surficial Soil

$$RBTL_{SS} = \frac{THQ \times BW \times AT_{nc} \times 365}{EF \times ED \times \left[\frac{10^{-6} \times (IR_{soil} \times RAF_o + SA \times M \times RAF_d)}{RfD_o} + \frac{(ET_{out} \times IR_{ao} \times (VF_{ss} + VF_p))}{RfD_i}\right]}$$

$$RBTL_{SS} = \frac{1 \times 15 \times 6 \times 365}{350 \times 6 \times \left[\frac{10^{-6} \times (200 \times 1 + 2500 \times 0.15 \times 0.5)}{0.003} + \frac{(10 \times 1 \times (9.67e - 6 + 2.30e - 12))}{0.0017}\right]} = 84.079$$

 $RBTL_{ss}$ = Risk-based target level in surficial soil [mg/kg] = 84.079

ii. Subsurface

$$RBTL_{si} = \frac{RBTL_{ai}}{VF_{sesp}}$$

$$RBTL_{ai} = \frac{THQ \times BW \times AT_{nc} \times 365 \times RfD_{i}}{IR_{ni} \times ET_{in} \times ED \times EF}$$

$$RBTL_{ai} = \frac{1 \times 15 \times 6 \times 365 \times 0.0017}{0.417 \times 18 \times 6 \times 350} = 3.543e - 3$$

 $RBTL_{ai}$ = Risk-based target level in indoor air [mg/m³] = 3.543e-3

$$RBTL_{si} = \frac{3.543e - 3}{3.485e - 2} = 1.017e - 1$$

 $RBTL_{si}$ = Risk-based target level for indoor inhalation of vapors from subsurface soils [mg/kg-soil] = 1.017e-1

iii. Groundwater

$$RBTL_{wi} = \frac{RBTL_{ai}}{VF_{wesp}}$$

$$RBTL_{wi} = \frac{3.543e - 3}{1.181e - 2} = 0.30$$

DCRBCA Final - 8 - Fiscal Year 2002

 $RBTL_{wi} = Risk$ -based target level for indoor inhalation of vapors from groundwater [mg/L-H₂O] = 0.30

DCRBCA Final - 9 - Fiscal Year 2002

2. Resident - Adult

Variables		Values Used
		44
BW	= Body weight [kg]	= 70**
ED	= Exposure duration [years]	= 30**
EF	= Exposure frequency [days/year]	$=350^{**}$
IR_{soil}	= Soil ingestion rate [mg/day]	$=100^{**}$
SA	= Skin surface area [cm ² /day]	= 5000**
IR_{ao}	= Outdoor inhalation rate [m ³ /hr]	= 1.5**
au	= averaging time for vapor flux,	
	$ED(yr) \times 365(day/yr) \times 86400(sec/day)$	$=7.88e8^{**}$
IR_{ai}	= Indoor inhalation rate [m ³ /hr]	$=0.633^{**}$
ET_{in}	= Indoor Exposure time [hr/day]	= 18**
L_B	Enclosed space volume/infiltration area ratio [cm]	$=200^{**}$
ER	= Enclosed space air exchange rate [1/s]	$=0.00014^{**}$
AT_{nc}	= Averaging time for non-carcinogens [years]	= 30**

^{**}Values may change for different receptors.

a. Carcinogen

i. Surficial Soil

$$RBTL_{SS} = \frac{TR \times BW \times AT_c \times 365}{EF \times ED \times [(SF_o \times 10^{-6} \times (IR_{soil} \times RAF_o + SA \times M \times RAF_d)) + (SF_i \times IR_{ao} \times ET_{out} \times (VF_{SS} + VF_p))]}$$

$$VF_{p} = \frac{P_{e} \times W_{a}}{U_{a} \times \delta_{a}} \times 10^{3}$$

$$VF_{p} = \frac{6.9e - 14 \times 1500}{225 \times 200} \times 10^{3} = 2.30e - 12$$

 VF_p = Volatilization factor of particulates [(mg/m³-air)/(mg/kg-soil)]

= 2.30e-12

$$(i)VF_{ss} = \frac{2 \times W_a \times \rho_s}{U_a \times \delta_a} \times \sqrt{\frac{D_s^{eff} \times H}{\pi \times [\theta_{ws} + (K_s \times \rho_s) + (H \times \theta_{as})] \times \tau}} \times 10^3$$

$$D_s^{eff} = D^a \times \frac{\theta_{as}^{3.33}}{\theta_T^{2.0}} + D^w \times \frac{1}{H} \times \frac{\theta_{ws}^{3.33}}{\theta_T^{2.0}}$$

$$D_s^{eff} = 9.30e - 2 \times \frac{0.2^{3.33}}{0.3^2} + 1.10e - 5 \times \frac{1}{0.228} \times \frac{0.1^{3.33}}{0.3^2} = 4.86e - 3$$

 D_s^{eff} = Effective diffusion coefficient in soil based on vapor-phase concentration [cm²/s]

=4.86e-3

DCRBCA Final - 10 - Fiscal Year 2002

$$(i)VF_{ss} = \frac{2 \times 1500 \times 1.8}{225 \times 200} \times \sqrt{\frac{4.86e - 3 \times 0.228}{\pi \times [0.1 + (0.661 \times 1.8) + (0.228 \times 0.2)] \times 9.46E8}} \times 10^{3} = 6.342e - 5$$

$$(ii)VF_{ss} = \frac{W_a \times \rho_s \times d}{U_a \times \delta_a \times \tau} \times 10^3$$

$$(ii)VF_{ss} = \frac{1500 \times 1.8 \times 30.48}{225 \times 200 \times 1.89E8} \times 10^3 = 1.933e - 6$$

** Take smaller of the two values:

 VF_{ss} = Volatilization factor from surficial soil [(mg/m³-air)/(mg/kg-soil)]

= 1.93e-6

$$RBTL_{SS} = \frac{1e - 6 \times 70 \times 70 \times 365}{350 \times 30 \times [(0.055 \times 10^{-6} \times (100 \times 1 + 5000 \times 0.15 \times 0.5)) + (0.029 \times 1.5 \times 10 \times (1.93e - 6 + 2.30e - 12))]} = 6.318$$

ii. Subsurface Soil

$$RBTL_{si} = \frac{RBTL_{ai}}{VF_{sesp}}$$

$$RBTL_{ai} = \frac{TR \times BW \times AT_c \times 365}{IR_{ai} \times ET_{in} \times ED \times EF \times SF_i}$$

$$RBTL_{ai} = \frac{1e - 6 \times 70 \times 70 \times 365}{0.633 \times 18 \times 30 \times 350 \times 0.029} = 5.155e - 4$$

 $RBTL_{ai}$ = Risk-based target level for indoor inhalation of air [mg/m³-air]

$$= 5.15e-4$$

$$VF_{sesp} = \frac{H \times \rho_{s}}{\left[\theta_{ws} + (K_{s} \times \rho_{s}) + (H \times \theta_{as})\right]} \times \left[\frac{D_{s}^{eff} / L_{s}}{ER \times L_{B}}\right] \times 10^{3}$$

$$1 + \left[\frac{D_{s}^{eff} / L_{s}}{ER \times L_{B}}\right] + \left[\frac{D_{s}^{eff} / L_{s}}{(D_{crack}^{eff} / L_{crack}) \times h}\right]$$

DCRBCA Final - 11 - Fiscal Year 2002

$$D_{crack}^{eff} = D^{a} \times \frac{\theta_{acrack}^{3.33}}{\theta_{T}^{2.0}} + D^{w} \times \frac{1}{H} \times \frac{\theta_{wcrack}^{3.33}}{\theta_{T}^{2.0}}$$
$$D_{crack}^{eff} = 9.30e - 2 \times \frac{0.2^{3.33}}{0.3^{2}} + 1.10e - 5 \times \frac{1}{0.228} \times \frac{0.1^{3.33}}{0.3^{2}} = 4.861e - 3$$

 D_{crack}^{eff} = Effective diffusion coefficient through foundation cracks [cm²/s] = 4.861e-3

$$VF_{sesp} = \frac{\frac{0.228 \times 1.8}{0.1 + (0.661 \times 1.8) + (0.228 \times 0.2)} \times \left[\frac{4.86e - 3/30.48}{0.00014 \times 200} \right]}{1 + \left[\frac{4.86e - 3/30.48}{0.00014 \times 200} \right] + \left[\frac{4.86e - 3/30.48}{(4.86e - 3/15) \times 0.01} \right]} \times 10^{3} = 3.485e - 2$$

 VF_{sesp} = Volatilization factor from subsurface soil to indoor (enclosed space) air [(mg/m³-air)/(mg/kg-soil)] = 3.485e-2

$$RBTL_{si} = \frac{5.15e - 4}{3.49e - 2} = 1.479e - 2$$

iii. Groundwater

$$RBTL_{wi} = \frac{RBTL_{ai}}{VF_{wesp}}$$

$$VF_{wesp} = \frac{H \times \left[\frac{D_{ws}^{eff} / L_{GW}}{ER \times L_{B}}\right]}{1 + \left[\frac{D_{ws}^{eff} / L_{GW}}{ER \times L_{B}}\right] + \left[\frac{D_{ws}^{eff} / L_{GW}}{\left(D_{crack}^{eff} / L_{crack}\right) \times h}\right]} \times 10^{3}$$

$$D_{ws}^{eff} = (h_{cap} + h_{v}) \times \left[\frac{h_{cap}}{D_{cap}^{eff}} + \frac{h_{v}}{D_{s}^{eff}}\right]^{-1}$$

$$D_{cap}^{eff} = D^{a} \times \frac{\theta_{acap}^{3.33}}{\theta_{r}^{2.0}} + D^{w} \times \frac{1}{H} \times \frac{\theta_{wcap}^{3.33}}{\theta_{r}^{2.0}}$$

DCRBCA Final - 12 - Fiscal Year 2002

$$D_{cap}^{eff} = 9.30e - 2 \times \frac{0.03^{3.33}}{0.3^2} + 1.10e - 5 \times \frac{1}{0.228} \times \frac{0.27^{3.33}}{0.3^2} = 1.562e - 5$$

 D_{cap}^{eff} = Effective diffusion coefficient through capillary fringe [cm²/s] = 1.56e-5

$$D_{ws}^{eff} = (5 + 295) \times \left[\frac{5}{1.56e - 5} + \frac{295}{4.86e - 3} \right]^{-1} = 7.88e - 4$$

 D_{ws}^{eff} = Effective diffusion coefficient between groundwater and soil surface [cm²/s] = 7.88e-4

$$VF_{wesp} = \frac{0.228 \times \left[\frac{7.88e - 4/300}{0.00014 \times 200} \right]}{1 + \left[\frac{7.88e - 4/300}{0.00014 \times 200} \right] + \left[\frac{7.88e - 4/300}{\left(4.86e - 3/15 \right) \times 0.01} \right]} \times 10^{3} = 1.181e - 2$$

 VF_{wesp} = Volatilization factor from groundwater to indoor (enclosed space) air [(mg/m³-air)/(mg/L-H₂O)] = 1.18e-2

$$RBTL_{wi} = \frac{5.15e - 4}{1.18e - 2} = 4.36e - 2$$

 $RBTL_{wi}$ = Risk-based target level for indoor inhalation of vapors from groundwater [mg/L-H₂O] = 4.36e-2

iv. Soil to Groundwater

Allowable soil concentration at the source[mg/kg] = Target surface water concentration[mg/L] at the POE $\times \frac{DAF_{POE}}{LF_{SW}}$

$$LF_{SW} = \frac{\rho_{s}}{\left[\theta_{ws} + K_{s} \times \rho_{s} + H \times \theta_{as}\right] \times \left(1 + \frac{U_{gw} \times \delta_{gw}}{I \times W}\right)}$$

$$LF_{SW} = \frac{1.8}{[0.1 + 0.661 \times 1.8 + 0.228 \times 0.2] \times \left(1 + \frac{304 \times 200}{14 \times 1500}\right)} = 0.346$$

DCRBCA Final - 13 - Fiscal Year 2002

 LF_{sw} = Dry soil leaching factor [(mg/L-H₂O)/(mg/kg-soil] = 0.346

Allowable soil concentration at the source[mg/kg] = $0.005 \times \frac{1}{0.346} = 1.449e - 2$

DCRBCA Final - 14 - Fiscal Year 2002

b. Non-Carcinogen

i. Surficial Soil

$$RBTL_{SS} = \frac{THQ \times BW \times AT_{nc} \times 365}{EF \times ED \times \left[\frac{10^{-6} \times (IR_{soil} \times RAF_o + SA \times M \times RAF_d)}{RfD_o} + \frac{(ET_{out} \times IR_{ao} \times (VF_{ss} + VF_p))}{RfD_i}\right]}$$

$$RBTL_{ss} = \frac{1 \times 70 \times 30 \times 365}{350 \times 30 \times \left[\frac{10^{-6} \times (100 \times 1 + 5000 \times 0.15 \times 0.5)}{0.003} + \frac{(10 \times 1 \times (1.93e - 6 + 2.30e - 12))}{0.0017}\right]} = 4.302e2$$

 $RBTL_{ss}$ = Risk-based target level in surficial soil [mg/kg]

=4.30e2

ii. Subsurface

$$RBTL_{si} = \frac{RBTL_{ai}}{VF_{sesp}}$$

$$RBTL_{ai} = \frac{THQ \times BW \times AT_{nc} \times 365 \times RfD_{i}}{IR_{ai} \times ET_{in} \times ED \times EF}$$

$$RBTL_{ai} = \frac{1 \times 70 \times 30 \times 365 \times 0.0017}{0.633 \times 18 \times 30 \times 350} = 1.089e - 2$$

 $RBTL_{ai}$ = Risk-based target level in indoor air [mg/m³] = 1.09e-2

$$RBTL_{si} = \frac{1.09e - 2}{1.18e - 2} = 9.24e - 1$$

 $RBTL_{si}$ = Risk-based target level for indoor inhalation of vapors from subsurface soils [mg/kg-soil]

= 9.24e-1

iii. Groundwater

$$RBTL_{wi} = \frac{RBTL_{ai}}{VF_{wesp}}$$

$$RBTL_{wi} = \frac{1.09e - 2}{1.181e - 2} = 0.924$$

DCRBCA Final - 15 - Fiscal Year 2002

 $RBTL_{wi}$ = Risk-based target level for indoor inhalation of vapors from groundwater [mg/L-H₂O] = 0.92

DCRBCA Final - 16 - Fiscal Year 2002

3. Commercial

Variables			Values Used
			ata ata
BW	=	Body weight [kg]	$=70^{**}$
ED	=	Exposure duration [years]	= 25**
EF	=	Exposure frequency [days/year]	$=250^{**}$
IR_{soil}	=	Soil ingestion rate [mg/day]	= 50**
SA	=	Skin surface area [cm ² /day]	= 5000**
IR_{ao}	=	Outdoor inhalation rate [m ³ /hr]	= 1.5**
au	=	averaging time for vapor flux,	
		$ED(yr) \times 365(day/yr) \times 86400(sec/day)$	$=7.88e8^{**}$
IR_{ai}	=	Indoor inhalation rate [m ³ /hr]	= 1.5**
ET_{in}	=	Indoor Exposure time [hr/day]	$=10^{**}$
L_B	=	Enclosed space volume/infiltration area ratio [cm]	$=300^{**}$
ER	=	Enclosed space air exchange rate [1/s]	$=0.00023^{**}$
AT_{nc}	=	Averaging time for non-carcinogens [years]	= 25**

^{**}Values may change for different receptors.

a. Carcinogen

i. Surficial Soil

$$RBTL_{SS} = \frac{TR \times BW \times AT_c \times 365}{EF \times ED \times [(SF_o \times 10^{-6} \times (IR_{soil} \times RAF_o + SA \times M \times RAF_d)) + (SF_i \times IR_{ao} \times ET_{out} \times (VF_{SS} + VF_p))]}$$

$$VF_{p} = \frac{P_{e} \times W_{a}}{U_{a} \times \delta_{a}} \times 10^{3}$$

$$VF_{p} = \frac{6.9e - 14 \times 1500}{225 \times 200} \times 10^{3} = 2.30e - 12$$

 VF_p = Volatilization factor of particulates [(mg/m³-air)/(mg/kg-soil)]

= 2.30e-12

(i)VF_{ss} =
$$\frac{2 \times W_a \times \rho_s}{U_a \times \delta_a} \times \sqrt{\frac{D_s^{eff} \times H}{\pi \times [\theta_{ws} + (K_s \times \rho_s) + (H \times \theta_{as})] \times \tau}} \times 10^3$$

$$D_s^{eff} = D^a \times \frac{\theta_{as}^{3.33}}{\theta_T^{2.0}} + D^w \times \frac{1}{H} \times \frac{\theta_{ws}^{3.33}}{\theta_T^{2.0}}$$

$$D_s^{eff} = 9.30e - 2 \times \frac{0.2^{3.33}}{0.3^2} + 1.10e - 5 \times \frac{1}{0.228} \times \frac{0.1^{3.33}}{0.3^2} = 4.86e - 3$$

 D_s^{eff} = Effective diffusion coefficient in soil based on vapor-phase

DCRBCA Final - 17 - Fiscal Year 2002

$$=4.86e-3$$

$$(i)VF_{ss} = \frac{2 \times 1500 \times 1.8}{225 \times 200} \times \sqrt{\frac{4.86E - 3 \times 0.228}{\pi \times [0.1 + (0.661 \times 1.8) + (0.228 \times 0.2)] \times 7.88E8}} \times 10^{3} = 6.949E - 5$$

$$(ii)VF_{ss} = \frac{W_a \times \rho_s \times d}{U_a \times \delta_a \times \tau} \times 10^3$$

$$(ii)VF_{ss} = \frac{1500 \times 1.8 \times 30.48}{225 \times 200 \times 7.88E8} \times 10^3 = 2.321E - 6$$

** Take smaller of the two values:

 VF_{ss} = Volatilization factor from surficial soil [(mg/m³-air)/(mg/kg-soil)]

$$= 2.32e-6$$

$$RBTL_{SS} = \frac{1e - 6 \times 70 \times 70 \times 365}{250 \times 25 \times [(0.055 \times 10^{-6} \times (50 \times 1 + 5000 \times 0.15 \times 0.5)) + (0.029 \times 1.5 \times 10 \times (2.32e - 6 + 2.30e - 12))]} = 11.735$$

ii. Subsurface Soil

$$RBTL_{si} = \frac{RBTL_{ai}}{VF_{sesp}}$$

$$RBTL_{ai} = \frac{TR \times BW \times AT_c \times 365}{IR_{ai} \times ET_{in} \times ED \times EF \times SF_i}$$

$$RBTL_{ai} = \frac{1e - 6 \times 70 \times 70 \times 365}{1.5 \times 10 \times 25 \times 250 \times 0.029} = 6.578e - 4$$

 $RBTL_{ai}$ = Risk-based target level for indoor inhalation of air [mg/m³-air]

$$= 6.578e-4$$

$$VF_{sesp} = \frac{H \times \rho_{s}}{1 + \left[\frac{D_{ws}^{eff} / L_{s}}{ER \times L_{B}}\right] \times \left[\frac{D_{s}^{eff} / L_{s}}{ER \times L_{B}}\right]} \times 10^{3}$$

$$1 + \left[\frac{D_{s}^{eff} / L_{s}}{ER \times L_{B}}\right] + \left[\frac{D_{s}^{eff} / L_{s}}{\left(D_{crack}^{eff} / L_{crack}\right) \times h}\right]$$

DCRBCA Final - 18 - Fiscal Year 2002

$$D_{crack}^{eff} = D^{a} \times \frac{\theta_{acrack}^{3.33}}{\theta_{T}^{2.0}} + D^{w} \times \frac{1}{H} \times \frac{\theta_{wcrack}^{3.33}}{\theta_{T}^{2.0}}$$

$$D_{crack}^{eff} = 9.30e - 2 \times \frac{0.2^{3.33}}{0.3^{2}} + 1.10e - 5 \times \frac{1}{0.228} \times \frac{0.1^{3.33}}{0.3^{2}} = 4.861e - 3$$

 D_{crack}^{eff} = Effective diffusion coefficient through foundation cracks [cm²/s] = 4.861e-3

$$VF_{sesp} = \frac{0.228 \times 1.8}{0.1 + (0.661 \times 1.8) + (0.228 \times 0.2)} \times \left[\frac{4.86e - 3/30.48}{0.00023 \times 300} \right] \times 10^{3} = 1.414e - 2$$
$$1 + \left[\frac{4.86e - 3/30.48}{0.00023 \times 300} \right] + \left[\frac{4.86e - 3/30.48}{(4.86e - 3/15) \times 0.01} \right]$$

 VF_{sesp} = Volatilization factor from subsurface soil to indoor (enclosed space) air [(mg/m³-air)/(mg/kg-soil)] = 1.41e-2

$$RBTL_{si} = \frac{6.58e - 4}{1.41e - 2} = 4.65e - 2$$

iii. Groundwater

$$RBTL_{wi} = \frac{RBTL_{ai}}{VF_{wesp}}$$

$$VF_{wesp} = \frac{H \times \left[\frac{D_{ws}^{eff} / L_{GW}}{ER \times L_{B}}\right]}{1 + \left[\frac{D_{ws}^{eff} / L_{GW}}{ER \times L_{B}}\right] + \left[\frac{D_{ws}^{eff} / L_{GW}}{\left(D_{crack}^{eff} / L_{crack}\right) \times h}\right]} \times 10^{3}$$

$$D_{ws}^{eff} = (h_{cap} + h_v) \times \left[\frac{h_{cap}}{D_{cap}^{eff}} + \frac{h_v}{D_s^{eff}} \right]^{-1}$$

$$D_{cap}^{eff} = D^{a} \times \frac{\theta_{acap}^{3.33}}{\theta_{T}^{2.0}} + D^{w} \times \frac{1}{H} \times \frac{\theta_{wcap}^{3.33}}{\theta_{T}^{2.0}}$$

DCRBCA Final - 19 - Fiscal Year 2002

$$D_{cap}^{eff} = 9.30e - 2 \times \frac{0.03^{3.33}}{0.3^2} + 1.10e - 5 \times \frac{1}{0.228} \times \frac{0.27^{3.33}}{0.3^2} = 1.562e - 5$$

 D_{cap}^{eff} = Effective diffusion coefficient through capillary fringe [cm²/s] = 1.56e-5

$$D_{ws}^{eff} = (5 + 295) \times \left[\frac{5}{1.56e - 5} + \frac{295}{4.86e - 3} \right]^{-1} = 7.88e - 4$$

 D_{ws}^{eff} = Effective diffusion coefficient between groundwater and soil surface [cm²/s] = 7.88e-4

$$VF_{wesp} = \frac{0.228 \times \left[\frac{7.88e - 4/300}{0.00023 \times 300} \right]}{1 + \left[\frac{7.88e - 4/300}{0.00023 \times 300} \right] + \left[\frac{7.88e - 4/300}{\left(4.86e - 3/15 \right) \times 0.01} \right]} \times 10^{3} = 4.793e - 3$$

 VF_{wesp} = Volatilization factor from groundwater to indoor (enclosed space) air [(mg/m³-air)/(mg/L-H₂O)] = 4.793e-3

$$RBTL_{wi} = \frac{6.58e - 4}{4.793e - 3} = 1.372e - 1$$

 $RBTL_{wi}$ = Risk-based target level for indoor inhalation of vapors from groundwater [mg/L-H₂O] = 1.37e-1

iv. Soil to Groundwater

Allowable soil concentration at the source[mg/kg] = Target surface water concentration[mg/L] at the POE $\times \frac{DAF_{POE}}{LF_{SW}}$

$$LF_{SW} = \frac{\rho_{s}}{[\theta_{ws} + K_{s} \times \rho_{s} + H \times \theta_{as}] \times \left(1 + \frac{U_{gw} \times \delta_{gw}}{I \times W}\right)}$$

$$LF_{SW} = \frac{1.8}{[0.1 + 0.661 \times 1.8 + 0.228 \times 0.2] \times \left(1 + \frac{304 \times 200}{14 \times 1500}\right)} = 0.346$$

DCRBCA Final - 20 - Fiscal Year 2002

 LF_{sw} = Dry soil leaching factor [(mg/L-H₂O)/(mg/kg-soil] = 0.346

Allowable soil concentration at the source $[mg/kg] = 0.005 \times \frac{1}{0.346} = 1.449e - 2$

DCRBCA Final - 21 - Fiscal Year 2002

b. Non-Carcinogen

i. Surficial Soil

$$RBTL_{SS} = \frac{THQ \times BW \times AT_{nc} \times 365}{EF \times ED \times \left[\frac{10^{-6} \times (IR_{soil} \times RAF_o + SA \times M \times RAF_d)}{RfD_o} + \frac{(ET_{out} \times IR_{ao} \times (VF_{ss} + VF_p))}{RfD_i}\right]}$$

$$RBTL_{ss} = \frac{1 \times 70 \times 25 \times 365}{250 \times 25 \times \left[\frac{10^{-6} \times (50 \times 1 + 5000 \times 0.15 \times 0.5)}{0.003} + \frac{(10 \times 1 \times (2.32e - 6 + 2.30e - 12))}{0.0017}\right]} = 6.58e2$$

 $RBTL_{ss}$ = Risk-based target level in surficial soil [mg/kg] = 6.58e2

ii. Subsurface

$$RBTL_{si} = \frac{RBTL_{ai}}{VF_{sesp}}$$

$$RBTL_{ai} = \frac{THQ \times BW \times AT_{nc} \times 365 \times RfD_{i}}{IR_{ai} \times ET_{ia} \times ED \times EF}$$

$$RBTL_{ai} = \frac{1 \times 70 \times 25 \times 365 \times 0.0017}{1.5 \times 10 \times 25 \times 250} = 1.158e - 2$$

 $RBTL_{ai}$ = Risk-based target level in indoor air [mg/m³] = 1.16e-2

$$RBTL_{si} = \frac{1.16e - 2}{1.41e - 2} = 8.215e - 1$$

 $RBTL_{si}$ = Risk-based target level for indoor inhalation of vapors from subsurface soils [mg/kg-soil] = 8.21e-1

iii. Groundwater

$$RBTL_{wi} = \frac{RBTL_{ai}}{VF_{wesp}}$$

$$RBTL_{wi} = \frac{1.16e - 2}{4.79e - 3} = 2.42$$

DCRBCA Final - 22 - Fiscal Year 2002

 $RBTL_{wi}$ = Risk-based target level for indoor inhalation of vapors from groundwater [mg/L-H₂O] = 2.42

DCRBCA Final - 23 - Fiscal Year 2002

TIER 2 EXAMPLE PROBLEMS

Scenario:

Complete routes of exposure include:

- 1. Indoor inhalation from soil
- 2. Indoor inhalation from groundwater

An aerial depiction of the contaminated area in question is shown below.

The impacted are is 20ft by 12 ft, and depth to groundwater is 15ft. Depth to impacted soil is 7ft.

Following a Tier 1 evaluation, site investigation indicated the following Tier 2 parameters:

$$\begin{array}{c} \theta_T = 0.25 \\ \theta_{ws} = 0.20 \\ \theta_{as} = 0.05 \\ L_{GW} = 20 ft = 609.6 cm \\ L_S = 10 ft = 304.8 cm \\ h = 0.001 \end{array}$$

Also assume the following:

• If wind direction is not constant and known over the contaminated site, the length of soil source area parallel to wind direction (W_a) may be taken as:

$$W_a = \sqrt{\text{total area of soil source}} = \sqrt{AxB} = 9.165 \, \text{ft}$$

• Similarly, the length of groundwater source area parallel to the wind direction $(W_{\rm ga})$ may be taken as:

$$W_{ga} = \sqrt{\text{total area of groundwater source}} = \sqrt{WxY} = 17.32 \, ft$$

All other parameters used in the following Tier 2 evaluation are the same as those used previously in the Tier 1 evaluation.

Contaminant: Benzene Receptor: Commercial Worker

1. Indoor inhalation from soil

a. Carcinogen

$$RBTL_{si} = \frac{RBTL_{ai}}{VF_{sesp}}$$

$$RBTL_{ai} = \frac{TR \times BW \times AT_c \times 365}{IR_{ai} \times ET_{in} \times ED \times EF \times SF_i}$$

$$RBTL_{ai} = \frac{1e - 6 \times 70 \times 70 \times 365}{1.5 \times 10 \times 25 \times 250 \times 0.029} = 6.578e - 4$$

 $RBTL_{ai}$ = Risk-based target level for indoor inhalation of air [mg/m³-air]

= 6.578e-4

$$VF_{sesp} = \frac{H \times \rho_{s}}{1 + \left[\frac{D_{s}^{eff} / L_{s}}{ER \times L_{B}}\right] \times \left[\frac{D_{s}^{eff} / L_{s}}{ER \times L_{B}}\right]} \times 10^{3}$$

$$1 + \left[\frac{D_{s}^{eff} / L_{s}}{ER \times L_{B}}\right] + \left[\frac{D_{s}^{eff} / L_{s}}{\left(D_{crack}^{eff} / L_{crack}\right) \times h}\right]$$

$$D_{s}^{eff} = D^{a} \times \frac{\theta_{as}^{3.33}}{\theta_{T}^{2.0}} + D^{w} \times \frac{1}{H} \times \frac{\theta_{ws}^{3.33}}{\theta_{T}^{2.0}}$$

$$D_{crack}^{eff} = 9.30e - 2 \times \frac{0.05^{3.33}}{0.25^2} + 1.10e - 5 \times \frac{1}{0.228} \times \frac{0.2^{3.33}}{0.25^2} = 7.284e - 5$$

 D_s^{eff} = Effective diffusion coefficient in soil based on vapor-phase concentration [cm²/s]

= 7.28e-5

$$D_{crack}^{eff} = D^{a} \times \frac{\theta_{acrack}^{3.33}}{\theta_{T}^{2.0}} + D^{w} \times \frac{1}{H} \times \frac{\theta_{wcrack}^{3.33}}{\theta_{T}^{2.0}}$$

$$D_{crack}^{eff} = 9.30e - 2 \times \frac{0.05^{3.33}}{0.25^2} + 1.10e - 5 \times \frac{1}{0.228} \times \frac{0.2^{3.33}}{0.25^2} = 7.284e - 5$$

 D_{crack}^{eff} = Effective diffusion coefficient through foundation cracks [cm²/s] = 7.28e - 5

$$VF_{sesp} = \frac{\frac{0.228 \times 1.8}{0.2 + (0.661 \times 1.8) + (0.228 \times 0.05)} \times \left[\frac{7.28e - 5/304.8}{0.00023 \times 300} \right]}{1 + \left[\frac{7.28e - 5/304.8}{0.00023 \times 300} \right] + \left[\frac{7.28e - 5/304.8}{(7.28e - 5/15) \times 0.001} \right]} \times 10^{3} = 2.019e - 5$$

 VF_{sesp} = Volatilization factor from subsurface soil to indoor (enclosed space) air [(mg/m³-air)/(mg/kg-soil)] = 2.019e-5

$$RBTL_{si} = \frac{6.58e - 4}{2.019e - 5} = 32.59$$

b. Non-carcinogen

$$RBTL_{si} = \frac{RBTL_{ai}}{VF_{sesp}}$$

$$RBTL_{ai} = \frac{THQ \times BW \times AT_{nc} \times 365 \times RfD_{i}}{IR_{ai} \times ET_{in} \times ED \times EF}$$

$$RBTL_{ai} = \frac{1 \times 70 \times 25 \times 365 \times 0.0017}{1.5 \times 10 \times 25 \times 250} = 1.158e - 2$$

 $RBTL_{ai}$ = Risk-based target level in indoor air [mg/m³] = 1.16e-2

$$RBTL_{si} = \frac{1.16e - 2}{2.02e - 5} = 5.74e2$$

 $RBTL_{si}$ = Risk-based target level for indoor inhalation of vapors from subsurface soils [mg/kg-soil] = 5.74e2

DCRBCA Final -26- Fiscal Year 2002

2. Indoor inhalation from groundwater

a. Carcinogen

$$RBTL_{wi} = \frac{RBTL_{ai}}{VF_{wesp}}$$

$$VF_{wesp} = \frac{H \times \left[\frac{D_{ws}^{eff} / L_{GW}}{ER \times L_{B}}\right]}{1 + \left[\frac{D_{ws}^{eff} / L_{GW}}{ER \times L_{B}}\right] + \left[\frac{D_{ws}^{eff} / L_{GW}}{\left(D_{crack}^{eff} / L_{crack}\right) \times h}\right]} \times 10^{3}$$

$$D_{ws}^{eff} = (h_{cap} + h_{v}) \times \left[\frac{h_{cap}}{D_{cap}^{eff}} + \frac{h_{v}}{D_{s}^{eff}} \right]^{-1}$$

$$D_{cap}^{eff} = D^a \times \frac{\theta_{acap}^{3.33}}{\theta_T^{2.0}} + D^w \times \frac{1}{H} \times \frac{\theta_{wcap}^{3.33}}{\theta_T^{2.0}}$$

$$D_{cap}^{eff} = 9.30e - 2 \times \frac{0.025^{3.33}}{0.25^2} + 1.10e - 5 \times \frac{1}{0.228} \times \frac{0.225^{3.33}}{0.25^2} = 1.226e - 5$$

 D_{cap}^{eff} = Effective diffusion coefficient through capillary fringe [cm²/s] = 1.23e-5

$$D_{ws}^{eff} = (5 + 295) \times \left[\frac{5}{1.23e - 5} + \frac{295}{7.28e - 5} \right]^{-1} = 6.728e - 5$$

 D_{ws}^{eff} = Effective diffusion coefficient between groundwater and soil surface [cm²/s] = 6.73e-5

$$VF_{wesp} = \frac{0.228 \times \left[\frac{6.73e - 5/609.6}{0.00023 \times 300} \right]}{1 + \left[\frac{6.73e - 5/609.6}{0.00023 \times 300} \right] + \left[\frac{6.73e - 5/609.6}{(7.28e - 5/15) \times 0.001} \right]} \times 10^{3} = 1.536e - 5$$

 VF_{wesp} = Volatilization factor from groundwater to indoor (enclosed space) air [(mg/m³-air)/(mg/L-H₂O)] = 1.54e – 5

$$RBTL_{wi} = \frac{6.58e - 4}{1.54e - 5} = 4.283e1$$

 $RBTL_{wi}$

= Risk-based target level for indoor inhalation of vapors from groundwater [mg/L-H₂O]

=4.28e1

b. Non-Carcinogen

$$RBTL_{wi} = \frac{RBTL_{ai}}{VF_{wesp}}$$

$$RBTL_{wi} = \frac{1.16e - 2}{1.54e - 5} = 7.532e2$$

 $RBTL_{wi}$ = Risk-based target level for indoor inhalation of vapors from groundwater [mg/L-H₂O]

= 7.53e2

Thus the SSTLs for benzene are:

Soil: 32.59 mg/kg Groundwater: 42.8 mg/L